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ERROR ANALYSIS FOR D-LEAPING SCHEME OF CHEMICAL
REACTION SYSTEM WITH DELAY∗
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Abstract. We perform an error analysis in both strong and weak senses for D-leaping scheme
of chemical reactions with delays within the framework of stochastic delay differential equations
(SDDEs). In order to establish the convergence orders, we prove an infinite dimensional Itô formula
for “tame” functionals acting on the segment process of the solution of SDDEs. It is shown that
the mean-square strong convergence is of order 1/2 and the weak convergence is of order 1 for the
scheme. Moreover, we propose highly accurate schemes by adding random corrections to the primitive
D-leaping scheme in each step. Numerical experiments are provided to illustrate the results.
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1. Introduction. Delay plays a significant role in many chemical dynamics. For
example, in genetic regulatory networks, processes such as transcription and transla-
tion do not occur instantaneously, and these delays may produce oscillations in the
networks [3,14]. In addition, delayed negative feedback is theorized to govern the dy-
namics of circadian oscillators [18]. Increasing delay dramatically prolongs the mean
residence times near stable states for bistable gene networks, which means that delay
stabilizes bistable gene networks [9]. In chemical reactions, noise and delay may inter-
act in subtle and complex ways. For example, in genetic regulatory networks, delay
can affect the stochastic properties of gene expression and hence the phenotype of the
cell [5]. For bistable gene networks, due to the stability enhanced by the infusion of
delay, it may induce an analogue of stochastic resonance [9].

In order to take proper account of these aspects, mathematical modeling, anal-
ysis, and simulation of the delayed chemical reactions are necessary. For example, a
delay stochastic simulation algorithm (DSSA) was proposed in [5], and three other
DSSA-type algorithms were proposed in [3]. Their implementations differ in the ways
they handled the waiting time for delayed reactions, as well as in the time steps in
the presence of delayed reaction updates and delayed consuming reactions. These al-
gorithms are direct generations of Gillespie’s stochastic simulation algorithms (SSAs)
to deal with delays. More recently, [7] introduced an exact SSA for chemical reac-
tion systems with delays, which was based on the fundamental premise of stochastic
chemical kinetics. Utilizing the fact that the initiation times of the reactions can be
represented as the firing times of independent unit rate Poisson processes with inter-
nal times given by integrated propensity functions, Anderson [2] derived a modified
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1798 CHUCHU CHEN AND DI LIU

next reaction method for exactly simulating chemical reaction systems with time- de-
pendent propensities and delays. Thanh, Priami, and Zunino [20] proposed another
exact simulation algorithm called rejection-based SSA.

Although SSAs are able to produce the exact time evolution of a chemical reaction
system, a great amount of computing time is often required to simulate a desired
amount of system time. To this end, an accelerated, approximate algorithm, similar
to the τ -leaping method that can produce significant gains in simulation speed with
acceptable losses in accuracy, is needed. Bayati, Chatelain, and Koumoutsakos [4]
proposed an accelerated algorithm called the D-leaping scheme for the approximate
simulation of biochemical systems with delays. Leier, Marques-Lago, and Burrage [12]
proposed a generalized binomial τ -leap method to overcome the limit of small step
sizes in SSAs.

In this paper, we aim to provide an error analysis for the scheme to approximate
the chemical reactions with delays. Mathematically, the chemical reaction process is
a pure jump process on a lattice with state-dependent intensity. We may formulate
a system of stochastic delay differential equations (SDDEs) via Poisson random mea-
sures for jump processes, similarly to [13]. Then we find that the D-leaping scheme is
just an explicit Euler-type scheme for this SDDE. Utilizing the Itô formula and the
Itô identity for a stochastic integral with Poisson random measure, we prove that

E[|X(tn)− Y (tn)|2] ≤ Cδt ∀ n = 1, 2, . . . , N,

which means that the mean-square strong convergence for the scheme is of order
1/2. Here X(t) is the exact solution process of the chemical system, Y (t) is the
approximated solution generated from the D-leaping scheme, and δt is the maximal
time stepsize δtn, n = 1, 2, . . . , N, with

∑N
n=1 δtn = T . Note that the constant C may

depend on the coefficients of the system and the final time.
Using the Markov property of the segment process, we rewrite the expression of

weak error as the summation of weak local error. The mathematical analysis of the
local error term is technique in two aspects. First, since delays break the Markovian
property of the system, by contrast with the nondelay case (stochastic differential
equations or SDEs), SDDEs do not correspond to diffusions on Euclidean space. Thus
techniques from deterministic PDEs do not apply. Second, techniques used in [6] to
derive the weak convergence order of Euler scheme for SDDEs driven by Brownian
motions utilize the Fréchet differentiability of the Euler approximation Y (tn; ti, η)
with respect to the initial data η and mean value theorem to show that the local error
term is of order O(δt2). However, since the coefficients in the SDDEs of chemical
reactions are not differentiable, the above approach also is not applicable. In order
to derive the weak convergence of the scheme, we first establish an Itô formula for
tame functionals of segments of the solution process of the SDDEs driven by Poisson
random measure. By inserting the functional of the previous step into the weak
local error term, we separate the local error term into two parts, and then apply
the established tame Itô formula. Moreover, the Malliavin calculus and anticipating
stochastic analysis techniques are employed to show that

|Eφ(X(tn))− Eφ(Y (tn))| ≤ Cδt,

which means that the weak convergence of the D-leaping scheme is of order 1.
The construction of high weak order schemes for stochastic systems is a funda-

mentally interesting topic; see [13, 17] for the case of stochastic differential equations
(SDEs) driven by Poisson random measure. In this paper, we also investigate the
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ERROR ANALYSIS FOR D-LEAPING SCHEME 1799

construction of high weak order schemes for SDDEs driven by Poisson random mea-
sure. Due to the difficulties caused by the coupling of delays and noises, we fix the
test function φ(x) first, and then apply the tame Itô formula to obtain the correction
term. By adding this random correction term to the primitive D-leaping scheme in
every step, we can improve the accuracy of the D-leaping scheme for arbitrary order
of moments of the solution.

Finally, we define the following notation in order to describe our setup. Z+
0 =

N∪ {0} denotes the set of nonnegative integers. Mathematically, a well-stirred chem-
ical reaction system can be accurately described by a discrete state continuous time
jump process on the lattice (Z+

0 )N . Let Rn be n-dimensional Euclidean space with Eu-
clidean norm |x| :=

√
x2

1 + · · ·+ x2
n for x = (x1, . . . , xn) ∈ Rn, and the inner product

in Rn is denoted by x · y, where x, y ∈ Rn, so that x · y =
∑n
i=1 xiyi. L([−τ, 0],Rn)

represents the space of all càdlàg paths [−τ, 0] → Rn, given the supremum norm
‖η‖∞ = sup−τ≤s≤0 |η(s)| for all η ∈ L([−τ, 0],Rn).

The rest of this paper is organized as follows. In section 2, the background of the
D-leaping scheme and the SDE formulation of the reacting system is introduced. In
section 3, we first give the strong convergence proof for the scheme. Then in order to
present the weak convergence, we establish the tame Itô formula and the Malliavin
calculus analysis for the solution process. Numerical experiments are performed to
support our theoretical results. In section 4, the generation to highly accurate schemes
is presented. Conclusions are made in section 5.

2. SDDEs and numerical approximation. Consider a well-stirred system
of N molecular species {S1, S2, . . . , SN} interacting through M chemical reaction
channels {R1, R2, . . . , RM}. Suppose that some channels involve delays. We let the set
Ind consist of all the channels without delay and let the set Id consist of all the channels
with delays, and τd is the delay for channel Rd ∈ Id, i.e., {R1, R2, . . . , RM} = Ind∪Id.
The state of the system is described by the vector

X(t) =
(
X1(t), X2(t), . . . , XN (t)

)
.

Each reaction channel Rj is characterized by its propensity function aj(x) and its
state change vector

νj =
(
ν1
j , ν

2
j , . . . , ν

N
j

)
,

where aj(x) ≥ 0 for physical states. Here aj(x)dt gives the probability that the system
will experience an Rj reaction in the next infinitesimal time dt when the current state
X(t) = x. νij is the change in the number of Si molecules caused by one Rj reaction.

2.1. Basic model. The exact DSSA algorithm proposed in [3] is described as
follows:

(1) Initialization. Set t← 0 and the initial number of molecules X(t) = x.
(2) Calculate propensity functions am(x), m = 1, . . . ,M . Generate τ ′ from a stan-

dard uniform random variable u2 as τ ′ = − ln(u2)/a0(x) with a0(x) =
∑M
j=1 aj(x).

If there are delayed reaction(s) when finishing in the time interval [t, t+ τ ′), discard
τ ′, update time t ← td, where td is the time when the first delayed reaction finishes,
update the state vector x, and repeat step (2). If there is no delayed reaction when
finishing in [t, t+ τ ′), proceed to step (3).

(3) Generate µ from a standard uniform random variable u1 by taking µ to be
the integer for which

∑µ−1
j=1 aj(x) < u1a0(x) ≤

∑µ
j=1 aj(x). If µ ∈ Ind, update the
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1800 CHUCHU CHEN AND DI LIU

state vector as X(t+ τ ′) = X(t) + νµ.
Note that X(t) is actually a compound Poisson process with state-dependent

intensity. Given any initial state X0 ∈ (Z+
0 )N , as in [13] the space of the possible

physical states generated from X0 is denoted as ΩX0 , which is defined by

ΩX0 =
{
X |X ∈ (Z+

0 )N , X = X0 +
M∑
j=1

kjνj , kj ∈ Z+
0

}
,

and the space of the possible states generated from X0 is denoted as ΩtX0
, which may

be negative and defined by

ΩtX0
=
{
X |X ∈ ZN , X = X0 +

M∑
j=1

kjνj , kj ∈ Z+
0

}
.

From [13], we notice that the state process X(t) generated by the DSSA algo-
rithm may be formulated as the form of an SDE with delay, also called a stochastic
delay differential equation (SDDE). We refer the reader to [8] for approximating the
stochastic delay birth-death processes by a SDDE driven by Brownian motion, and
to [11] for numerical analysis of SDDEs driven by Brownian motion. In order to unify
the equation, we assign the delay τj = 0 to a nondelayed channel Rj ∈ Ind. Therefore
X(t) is the solution of the following SDDE:

(1) X(t) =

η(0) +
∑M
j=1

∫ t
0

∫ A
0 νjcj(a; X(s− τj−))λ(ds× da), t > 0,

η(t), −τ ≤ t ≤ 0, τ = max{τj , j ∈ Id}.

Here λ(dt×da) is a Poisson random measure with Lebesgue intensity measure m(dt×
da) = dt× da on the probability space (Ω,F , P ), and we let {Ft}t≥0 be the filtration
generated by the values of the compensated Poisson random measure (λ−m)(dt×da).
The number A denotes the upper bound of total propensity

A = max{a0(x), x ∈ ΩX0}.

The function cj(a; X(s− τj−)) is defined by

cj(a; X(s− τj−)) =

{
1 if a ∈ (hj−1(X(s−)), hj(X(s−))],

0 otherwise,

with h0 = 0 and hj(X(s−)) = hj−1(X(s−)) + aj(X(s − τj−)). Thus intervals
(hj−1(X(s−)), hj(X(s−))], j = 1, 2, . . . ,M, are disjoint, and the length of the jth
interval is aj(X(s − τj−)). We refer the reader to [1] for stochastic integrals with
respect to Lévy processes.

We make the following assumptions; see [13] for further information.

Assumption 2.1 (condition on propensity functions). The propensity function
aj(x) ≥ 0 for all x ∈ ΩX0 , and aj(x) = 0 if x ∈ ΩX0 , but x+ νj /∈ ΩX0 .

This assumption is natural. Otherwise the negative states will appear in the
physical process.

Assumption 2.2 (bound on X(t)). The number of elements in ΩX0 is finite;
i.e., X(t) is in a bounded lattice.
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ERROR ANALYSIS FOR D-LEAPING SCHEME 1801

This assumption is reasonable because the number of the molecules could not be
arbitrarily large in realistic chemical reactions.

In order to perform the analysis, we make the following assumption on aj(x).

Assumption 2.3 (local Lipschitz condition on aj(x)). The function aj(x) is
Lipschitz continuous in a bounded domain. That is, |aj(x) − aj(y)| ≤ Lj |x − y| for
any bounded x and y, where Lj is a fixed positive real number.

Proposition 2.4 (redefinition of aj(x)). We define the modification of aj(x)
as

ãj(x) =

{
aj(x), x ∈ (Z+

0 )N ,

0, x ∈ ZN/(Z+
0 )N .

We have

|ãj(x)− ãj(y)| ≤ Lj |x− y| ∀ x,y ∈ ΩtX0
∪
(
ZN/(Z+

0 )N
)
.

For simplicity we will continue to denote ãj(x) as aj(x) in the text.

2.2. Numerical method. As is well known, the DSSA algorithm is exact, but
it costs a great amount of time to simulate the system. Therefore, the cost-efficient
approximated numerical method should be proposed. When there is no delay involved
in the system, the classical approximated method is called the τ -leaping method. The
method is established by increasing the leaping time stepsize to allow the fires of a
proper number of actions. For the system involving delays, a corresponding scheme
(the D-leaping scheme) was proposed in [4]. The pseudocode of the D-leaping scheme
reads as follows.

Algorithm 1 D-leaping algorithm.
while t < tfinal do

τ ′ ∼ ξ(Θ)
X(t+ τ ′) = X(t)
for all d such that qd,α ∈ [t, t+ τ ′] do

k̂d ∼ B(kd,
min(t+τd−qd,α, spand)

spand
)

spand = spand − (t+ τ ′ − qd,α)
kd = kd − k̂d
qd,α = t+ τ ′
X(t+ τ ′) = X(t+ τ ′) +

∑
d k̂dνd

if kd == 0 then
Queue.remove([Rd, qd,α, kd, spand])

end if
end for
kj∪d ∼ Ψ(Θ, τ ′)
for all d such that kd 6= 0 do

Queue.insert([Rd, qd,α = t+ τd, kd, spand = τ ′])
end for
X(t+ τ ′) = X(t+ τ ′) +

∑
j kjνj

t = t+ τ ′
end while
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1802 CHUCHU CHEN AND DI LIU

If we suppose that the above D-leaping scheme is posed in a time interval [0, T ]
with NT steps,

0 = t0 < t1 < · · · < tNT = T,

then the above algorithm could also be written as

(2) Z(tn+1) = Z(tn) +
M∑
j=1

kjνj ,

where for j = 1, 2, . . . ,M , kj ∼ P
( ∫ tn+1

tn
aj(Z ◦ ξ(t − τj))dt

)
with ξ(t) = tn if t ∈

[tn, tn+1). Note that in the case of τj = 0, we have kj ∈ P
(
aj(Z(tn))δtn

)
with

δtn := tn+1 − tn.
Note that the random numbers in (2) are generated from Poisson distribution,

while some random numbers in Algorithm 1 are generated from binomial distribu-
tion. Because the partial number of executions can be determined by considering a
partitioning of the time domain, both binomial distribution and Poisson distribution
are suitable to model the number of executions for each molecular species. We know
that the processes generated from Algorithm 1 and (2) are equivalent to each other
in a distribution sense. In fact, on the one hand, there holds the property of sums
of Poisson-distributed random variables; on the other hand, we let the number k be
generated from Poisson distribution with parameter λ > 0, i.e.,

k ∼ P(λ).

If λ is partitioned into two parts denoted by λ1 > 0 and λ2 > 0 such that λ1 +λ2 = λ,
it follows that the number kj (j = 1, 2) in each part is

kj ∼ P(λj) for j = 1, 2 such that k1 + k2 = k.

Because of the dependence of λ1 and λ2, i.e., for the fixed λ, λ1 + λ2 = λ, we could
express the number in each part by binomial distribution as

k1 ∼ B
(
k,
λ1

λ

)
,

where B(N, p) represents a binomial distribution of N trials with probability p. The
condition distribution given k1 reduces to the number k2 = k − k1.

Since∫ tn+1

tn

νjcj(a; Z ◦ ξ(s− τj))λ(ds× da)

=
∫ tn+1

tn

νjcj(a; Z ◦ ξ(s− τj))m(ds× da)

+
∫ tn+1

tn

νjcj(a; Z ◦ ξ(s− τj))(λ−m)(ds× da)

= νj

∫ tn+1

tn

aj(Z ◦ ξ(t− τj))dt

+
(
νjP

(∫ tn+1

tn

aj(Z ◦ ξ(t− τj))dt
)
− νj

∫ tn+1

tn

aj(Z ◦ ξ(t− τj))dt
)

= νjP
(∫ tn+1

tn

aj(Z ◦ ξ(t− τj))dt
)
,
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ERROR ANALYSIS FOR D-LEAPING SCHEME 1803

the scheme (2) may be considered as an explicit Euler-type scheme for SDDE (1),
see [19].

In the following analysis we may need the continuous time version of D-leaping
scheme (2),

(3) Y (t) =

η(0) +
∑M
j=1

∫ t
0

∫ A
0 νjcj(a; Y ◦ ξ(s− τj))λ(ds× da), t > 0,

η(t), −τ ≤ t ≤ 0, τ = max{τj , j ∈ Id},

where ξ(t) = tn if t ∈ [tn, tn+1). We note that the above process Y (t) coincides with
the result obtained from Algorithm 1 in each time-step point, i.e., Y (tn) = Z(tn),
n ∈ Z.

3. Convergence order of the D-leaping scheme. In this section, we will
study the convergence order in both mean-square and weak senses of scheme (3)
separately. It is shown that the mean-square strong convergence is of order 1/2 and
the weak convergence is of order 1.

3.1. Strong convergence order. First, in this part we prove the strong con-
vergence order of the D-leaping scheme (3). The result is established via the Hölder
continuity of the process X(t) (see Proposition 3.3), Itô isometry, and Itô formula.
Moreover, the following two properties of the jump operator ∆X(t) = X(t)−X(t−)
are used frequently; see [13] for the proof.

Lemma 3.1. For any fixed s > 0, ∆X(s) = 0 a.s.

Lemma 3.2. For any continuous function a(x) and two positive reals d > c, we
have

∫ d
c

∆a(X(t))dt = 0.

In the following analysis, we let C denote the constant depending on the Lipschitz
constant L =

∑M
j=1 Lj , the state change vectors K = max{|νj |, j = 1, 2, . . . ,M}, the

number of channels M, and the final time T , but not depending on time step n. Notice
that the constant C may be different from line to line.

Proposition 3.3. Under Assumption 2.1, the SDDE driven by Poisson random
measure (1) is well-posed in the sense that there exists a unique physical solution
X(t) ∈ ΩX0 in [0,∞). Furthermore, we have

E|X(t)−X(s)|2 ≤ C|t− s|.

The proof of Proposition 3.3 is postponed to Appendix A. Based on these prop-
erties, We obtain the following strong convergence theorem, which shows that the
strong convergence of the D-leaping scheme is of order 1/2.

Theorem 3.4 (mean-square convergence). Under Assumptions 2.1–2.3 and Propo-
sition 2.4 we have

(4) sup
n≤NT

E|X(tn)− Y (tn)|2 ≤ Cδt,

where δt := maxn δtn = maxn(tn+1 − tn).

Proof. In order to prove the strong convergence of the D-leaping scheme, we write
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1804 CHUCHU CHEN AND DI LIU

(1) from tn to tn+1 as

X(tn+1) = X(tn) +
M∑
j=1

∫ tn+1

tn

∫ A

0
νjcj(a; X(t− τj−))m(dt× da)

+
M∑
j=1

∫ tn+1

tn

∫ A

0
νjcj(a; X(t− τj−))(λ−m)(dt× da)

(5)

and (3) from tn to tn+1 as

Y (tn+1) = Y (tn) +
M∑
j=1

∫ tn+1

tn

∫ A

0
νjcj(a; Y ◦ ξ(t− τj))m(dt× da)

+
M∑
j=1

∫ tn+1

tn

∫ A

0
νjcj(a; Y ◦ ξ(t− τj))(λ−m)(dt× da).

(6)

Now we subtract (5) and (6) and define the error

E(tn) = X(tn)− Y (tn)

to get

E(tn+1) = E(tn) +
M∑
j=1

∫ tn+1

tn

νj

(
aj(X(t− τj−))− aj(Y ◦ ξ(t− τj))

)
dt

+
M∑
j=1

∫ tn+1

tn

∫ A

0
νj

(
cj(a; X(t− τj−))− cj(a; Y ◦ ξ(t− τj))

)
(λ−m)(dt× da)

=: E(tn) +A1 +A2,

(7)

where we use the identity∫ tn+1

tn

∫ A

0
νjcj(a; X(t− τj−))m(dt× da) =

∫ tn+1

tn

νjaj(X(t− τj−))dt.

Squaring both sides of (7) we obtain

|E(tn+1)|2 =|E(tn)|2 + |A1|2 + |A2|2 + 2
(
E(tn) · A1 +E(tn) · A2 +A1 · A2

)
.

We estimate each term separately for the above equations.
For term A1, we have

A1 =
M∑
j=1

∫ tn+1

tn

νj

(
aj(X ◦ ξ(t− τj))− aj(Y ◦ ξ(t− τj))

)
dt

+
M∑
j=1

∫ tn+1

tn

νj

(
aj(X(t− τj−))− aj(X ◦ ξ(t− τj))

)
dt

=: Aa1 +Ab1.

D
ow

nl
oa

de
d 

07
/2

8/
18

 to
 1

24
.1

6.
14

8.
10

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERROR ANALYSIS FOR D-LEAPING SCHEME 1805

By Itô isometry and Proposition 2.4,

E
∣∣∣∣∫ tn+1

tn

νj

(
aj(X ◦ ξ(t− τj))− aj(Y ◦ ξ(t− τj))

)
dt
∣∣∣∣2

≤ K2δtE
∫ tn+1

tn

|aj(X ◦ ξ(t− τj))− aj(Y ◦ ξ(t− τj))|2dt

≤ K2L2δtE
∫ tn+1

tn

|E ◦ ξ(t− τj)|2dt,

and also by Proposition 3.3,

E
∣∣∣∣∫ tn+1

tn

νj

(
aj(X(t− τj−))− aj(X ◦ ξ(t− τj))

)
dt
∣∣∣∣2

≤ K2δtE
∫ tn+1

tn

|aj(X(t− τj−))− aj(X ◦ ξ(t− τj))|2dt

≤ K2L2δtE
∫ tn+1

tn

|X(t− τj−)−X ◦ ξ(t− τj)|2dt

≤ Cδt3.

For term A2, we have

A2 =
M∑
j=1

∫ tn+1

tn

∫ A

0
νj

(
cj(a; X ◦ ξ(t− τj))− cj(a; Y ◦ ξ(t− τj))

)
(λ−m)(dt× da)

+
M∑
j=1

∫ tn+1

tn

∫ A

0
νj

(
cj(a; X(t− τj−))− cj(a; X ◦ ξ(t− τj))

)
(λ−m)(dt× da)

=: Aa2 +Ab2.

To deal with Aa2 and Ab2, we use the Itô formula to get

E

∣∣∣∣∣
∫ tn+1

tn

∫ A

0

(
cj(a; X ◦ ξ(t− τj))− cj(a; Y ◦ ξ(t− τj))

)
(λ−m)(dt× da)

∣∣∣∣∣
2

= E
∫ tn+1

tn

∫ A

0
|cj(a; X ◦ ξ(t− τj))− cj(a; Y ◦ ξ(t− τj))|2m(dt× da)

≤
∫ tn+1

tn

E
(
|hj−1(X ◦ ξ(t))− hj−1(Y ◦ ξ(t))|+ |hj(X ◦ ξ(t))− hj(Y ◦ ξ(t))|

)
dt

. max
1≤j≤M

∫ tn+1

tn

E|E ◦ ξ(t− τj)|dt = max
1≤j≤M

∫ tn+1

tn

E|E ◦ ξ(t− τj)|2dt
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1806 CHUCHU CHEN AND DI LIU

and

E

∣∣∣∣∣
∫ tn+1

tn

∫ A

0

(
cj(a; X(t− τj−))− cj(a; X ◦ ξ(t− τj))

)
(λ−m)(dt× da)

∣∣∣∣∣
2

= E
∫ tn+1

tn

∫ A

0
|cj(a; X(t− τj−))− cj(a; X ◦ ξ(t− τj))|2m(dt× da)

≤
∫ tn+1

tn

E
(
|hj−1(X(t−))− hj−1(X ◦ ξ(t))|+ |hj(X(t−))− hj(X ◦ ξ(t))|

)
dt

. max
1≤j≤M

∫ tn+1

tn

E|X(t− τj−)−X ◦ ξ(t− τj)|dt

≤ max
1≤j≤M

∫ tn+1

tn

E|X(t− τj)−X ◦ ξ(t− τj)|2dt ≤ Cδt2.

For term E(tn) · Aa1 , we have

E
(
E(tn) · Aa1

)
≤ CδtE|E(tn)|2 + C

1
δt

E|Aa1 |2

≤ CδtE|E(tn)|2 + C max
1≤j≤M

E
∫ tn+1

tn

|E ◦ ξ(t− τj)|2dt.

By the independence of Poisson random measure, we know that E(E(tn) · A2) = 0.
For the other terms, we may use the Hölder inequality ab ≤ 1

2 (a2 + b2).
Finally, we have

E|E(tn+1)|2 ≤ CδtE|E(tn)|2 + C max
1≤j≤M

E
∫ tn+1

tn

|E ◦ ξ(t− τj)|2dt+ Cδt2,

which yields

E|E(tn)|2 ≤ Cδt ∀ n ≤ NT .

Thus we finish the proof.

3.2. Weak convergence order. In this part, we will study the weak conver-
gence order of scheme (3). The classical approach to prove the weak convergence order
of the SDE is via a Kolmogorov PDE. However, due to the existence of time delay
and the nondifferentiability of the coefficients of (1), the technique of a Kolmogorov
PDE does not apply. To solve this problem, we rewrite the weak error as

Eφ(X(tn))− Eφ(Y (tn))

=
n∑
i=1

{
Eu(Π(Xti(·; ti−1,Xti−1(·; 0, η))))− Eu(Π(Xti−1(·; 0, η)))

}
−
{

Eu(Π(Yti(·; ti−1,Xti−1(·; 0, η))))− Eu(Π(Xti−1(·; 0, η)))
}
,

where we utilize the tame property of process Y (t) (see Lemma 3.8 or Proposition
3.9); i.e., there exists a function u such that

u(Π(η)) = Eφ(Y (tn; ti, η)).
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ERROR ANALYSIS FOR D-LEAPING SCHEME 1807

Then we estimate that each term in the summation is O(δt2), where we may need to
establish the Itô formula for tame functionals (see Proposition 3.10), and Malliavin
calculus for SDDE (1) (see Proposition 3.11).

First, let us introduce some notation. Define the projection Π : L([−τ, 0],RN )→
RNk associated with µ1, . . . , µk ∈ [−τ, 0] by

(8) Π(η) := (η(µ1), . . . , η(µk)) ∈ RNk

for all η ∈ L([−τ, 0],RN ).
A functional Ψ : [0, T ] × L([−τ, 0],RN ) → R is called tame if there exists a

function f : [0, T ]× L([−τ, 0],RN )→ R and a projection Π : L([−τ, 0],RN )→ RNk
such that

(9) Ψ(t, η) = f(t,Π(η))

for all t ∈ [0, T ] and η ∈ L([−τ, 0],RN ).
For any continuous N -dimensional process X : [−τ, T ] × Ω → RN , define the

segment Xt : [−τ, 0]→ RN , t ∈ [0, T ], by

(10) Xt(u) = X(t+ u).

Denote by D the Malliavin differentiation operator associated with the Poisson
random measure. For F ∈ D1,2, we call Dt,zF the Malliavin derivative of F at
(t, z). Here D1,2 is a stochastic Sobolev space consisting of all FT -measurable ran-
dom variables F ∈ L2(P ) with chaos expansion F =

∑∞
n=0 In(fn) satisfying the

convergence criterion ‖F‖2D1,2 =
∑0
n=1 nn!‖fn‖2L2 < ∞. The operator D is defined

by Dt,zF =
∑∞
n=1 nIn−1(fn(·, t, z)) for all F ∈ D1,2. We refer the reader to [16]

for more details. In this section, we need some properties of Malliavin derivatives;
see [16, Chapter 12].

Proposition 3.5 (chain rule). Let F ∈ D1,2 and let ψ be a real continuous
function on R. Suppose ψ(F ) ∈ L2(P ) and Ψ(F + Dt,zF ) ∈ L2(P × λ × ν). Then
ψ(F ) ∈ D1,2 and

(11) Dt,zψ(F ) = Ψ(F +Dt,zF )− ψ(F ).

The Skorohod integral can be considered as the adjoint operator to the Malliavin
derivative, and it is an extension of the Itô integral. See [16, Definition 11.1] for
the definition of Skorohod integral. Below is the relationship between the Malliavin
derivative and the Skorohod integral.

Proposition 3.6 (duality formula). Let X(t, z), t ∈ [0, T ], z ∈ [0, A], be Skoro-
hod integrable and let F ∈ D1,2. Then

(12) E

[
F

∫ T

0

∫ A

0
X(t, z)(λ−m)(dt× dz)

]
= E

[∫ T

0

∫ A

0
X(t, z)Dt,zFm(dt× dz)

]
.

Proposition 3.7 (fundamental theorem of calculus). Let X(s, y), (s, y) ∈ [0, T ]×
[0, A] be a stochastic process such that

E

[∫ T

0

∫ A

0
|X(s, y)|2m(ds× dy)

]
<∞.
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1808 CHUCHU CHEN AND DI LIU

Assume that X(s, y) ∈ D1,2 for all (s, y) ∈ [0, T ] × [0, A] and that Dt,zX(·, ·) is
Skorohod integrable with

E

[∫ T

0

∫ A

0

∣∣∣ ∫ T

0

∫ A

0
Dt,zX(s, y)(λ−m)(ds× dy)

∣∣∣2m(dt× dz)

]
<∞.

Then ∫ T

0

∫ A

0
X(s, y)(λ−m)(ds× dy) ∈ D1,2

and
(13)

Dt,z

∫ T

0

∫ A

0
X(s, y)(λ−m)(ds×dy) = X(t, z)+

∫ T

0

∫ A

0
Dt,zX(s, y)(λ−m)(ds×dy).

To simplify notation in the proof of Lemma 3.8, we consider the case of uniform
partition, and the delay is a multiple of time stepsize, which means that the D-leaping
scheme (3) is equivalent to the following equation:

(14) Y (t) =

η(0) +
∑M
j=1

∫ t
0

∫ A
0 νjcj(a; Y ◦ ξ(s)− τj)λ(ds× da), t > 0,

η(t), −τ ≤ t ≤ 0.

Obviously, the results in what follows still hold for scheme (3).
The first lemma establishes the tame character of the Euler approximation (14).

Its proof is given in Appendix B.

Lemma 3.8. Fix a partition point ti for some i ∈ {0, 1, . . . , NT }. Then for a.a.
ω ∈ Ω, the function

[ti, T ]× L([−τ, 0],R)→ R,
(t, η) 7→ Y (t, ω; ti, η)

is a tame functional; i.e., there exists a random function F such that

Y (t, ω; ti, η) = F (t, ω,Π(η)).

Proposition 3.9. Given any fixed t, Eφ(Y (t; ti, η)) is a tame functional, which
means there exists a deterministic function u such that

Eφ(Y (t; ti, η)) = Eφ(F (t,Π(η))) =: u(Π(η)).

In order to derive the weak convergence order of the D-leaping scheme, we shall
first establish a tame Itô formula. It describes how the segment process Xt transforms
under tame functionals. We state the proof in Appendix C.

Proposition 3.10. Assume that

(15) X(t) =

η(0) +
∫ t
0

∫ A
0 K(s, a)λ(ds× da), t > 0,

η(t), −τ ≤ t ≤ 0.
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ERROR ANALYSIS FOR D-LEAPING SCHEME 1809

Suppose φ ∈ C(Rk; R) and let Π be the tame projection. Then for all t ∈ [0, T ], we
have a.s.

φ(Π(Xt))− φ(Π(X0)) =
k∑
i=1

∫ t

0

∫ A

0
,[

φ(Xs−(µ1), . . . , Xs−(µi−1), Xs−(µi) +K(s+ µi, a), Xs(µi+1), . . . , Xs(µk))

− φ(Xs−(µ1), . . . , Xs−(µi−1), Xs−(µi), Xs(µi+1), . . . , Xs(µk))
]
λ(ds× da).

(16)

Let X(t) := X(t;σ, η), t ∈ [σ− τ, T ] be the solution with initial process η at time
σ, i.e.,

X(t) =

η(0) +
∑M
j=1

∫ t
σ

∫ A
0 νjcj(a; X(s− τj−))λ(ds× da), t > σ,

η(t− σ), σ − τ ≤ t ≤ σ.

(17)

Moreover, we also need the solution X(t) to be Malliavin differentiable. The proof of
the following proposition is stated in Appendix D.

Proposition 3.11. For any η ∈ L2(Ω, L([−τ, 0],R);Fσ) with

sup
σ−τ≤s≤σ

E
∫ A

0
‖Ds,zη‖2∞ <∞,

the solution X(t) of (17) belongs to D1,2 for all t ∈ [σ − τ, T ]. Moreover, there exists
a positive constant C such that
(18)

sup
0≤σ≤T

sup
σ−τ≤r,t≤T

E
∫ A

0
|Dr,zX(t;σ, η)|2dz ≤ C

(
1 + sup

σ−τ≤s≤σ
E
∫ A

0
‖Ds,zη‖2∞

)
.

Finally, we obtain the following weak convergence theorem, which means that the
weak convergence order of the D-leaping scheme (3) is 1.

Theorem 3.12 (weak convergence). There exists a positive constant C such that

(19) |Eφ(X(tn))− Eφ(Y (tn))| ≤ Cδt

for all n ∈ {1, 2, . . . , NT } and φ : RN → R of class C2
b .

Proof. Using the Markov property for the segments Xt and Yt (see [15]), we may
write the weak error as

Eφ(X(tn; 0, η))− Eφ(Y (tn; 0, η))
= Eφ(Y (tn; tn,Xtn(·; 0, η)))− Eφ(Y (tn; t0,Xt0(·; 0, η)))

=
n∑
i=1

{
Eφ(Y (tn; ti,Xti(·; 0, η)))− Eφ(Y (tn; ti−1,Xti−1(·; 0, η)))

}
=

n∑
i=1

{
Eφ(Y (tn; ti,Xti(·; ti−1,Xti−1(·; 0, η))))

− Eφ(Y (tn; ti,Yti(·; ti−1,Xti−1(·; 0, η))))
}
.

(20)
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1810 CHUCHU CHEN AND DI LIU

From Proposition 3.9, we know that there exists a function u such that

u(Π(η)) = Eφ(Y (tn; ti, η)).

Thus we rewrite (20) as

Eφ(X(tn; 0, η))− Eφ(Y (tn; 0, η))

=
n∑
i=1

{
Eu(Π(Xti(·; ti−1,Xti−1(·; 0, η))))− Eu(Π(Yti(·; ti−1,Xti−1(·; 0, η))))

}
=

n∑
i=1

{
Eu(Π(Xti(·; ti−1,Xti−1(·; 0, η))))− Eu(Π(Xti−1(·; 0, η)))

}
−
{

Eu(Π(Yti(·; ti−1,Xti−1(·; 0, η))))− Eu(Π(Xti−1(·; 0, η)))
}
.

(21)

By the tame Itô formula (Proposition 3.10), we obtain

Eu(Π(Xti(·; ti−1,Xti−1(·; 0, η))))− Eu(Π(Xti−1(·; 0, η)))

=
k∑

m=1

E
∫ ti

ti−1

∫ A

0

[
u

(
. . . ,Xs−(µm) +

M∑
j=1

νjcj(a; Xs−(µm − τj)), . . .
)

− u(. . . ,Xs−(µm), . . .)
]
λ(ds× da)

=
k∑

m=1

E
∫ ti

ti−1

{
M∑
j=1

aj(Xs−(µm − τj))
[
u(. . . ,Xs−(µm) + νj , . . .)

− u(. . . ,Xs−(µm), . . .)
]}

ds

and

Eu(Π(Yti(·; ti−1,Xti−1(·; 0, η))))− Eu(Π(Xti−1(·; 0, η)))

=
k∑

m=1

E
∫ ti

ti−1

∫ A

0

[
u

(
. . . ,Ys−(µm) +

M∑
j=1

νjcj(a; Yξ(s)(µm − τj)), . . .
)

− u(. . . ,Ys−(µm), . . .)
]
λ(ds× da)

=
k∑

m=1

E
∫ ti

ti−1

{
M∑
j=1

aj(Y (ti−1 + µm − τj))
[
u(. . . ,Ys−(µm) + νj , . . .)

− u(. . . ,Ys−(µm), . . .)
]}

ds.

We define

fmj (Π(Xs)) = u(. . . ,Xs−(µm) + νj , . . .)− u(. . . ,Xs−(µm), . . .).
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ERROR ANALYSIS FOR D-LEAPING SCHEME 1811

Thus (20) is

Eφ(X(tn; 0, η))− Eφ(Y (tn; 0, η))

=
n∑
i=1

k∑
m=1

M∑
j=1

E
∫ ti

ti−1

[
aj(X(s+ µm − τj−))fmj (Π(Xs))

− aj(X(ti−1 + µm − τj))fmj (Π(Ys))
]
ds

=:
n∑
i=1

k∑
m=1

M∑
j=1

Dim,j .

(22)

In what follows, we need to show that Dim,j ∼ O(δt2).
We note that

Dim,j =
∫ ti

ti−1

E
{

[aj(X(s+ µm − τj−))− aj(X(ti−1 + µm − τj))]fmj (Π(Xs))
}

ds

+
∫ ti

ti−1

E
{
aj(X(ti−1 + µm − τj))[fmj (Π(Xs))− fmj (Π(Ys))]

}
ds

=:
∫ ti

ti−1

Di,1m,j(s)ds+
∫ ti

ti−1

Di,2m,j(s)ds.

(23)

We claim that for all s ∈ [ti−1, ti], we have Di,1m,j(s), D
i,2
m,j(s) ∼ O(δt), which means

that Dim,j ∼ O(δt2).
In fact, by the Itô formula,

Di,1m,j(s) = E

{
fmj (Π(Xs))

∫ s+µm−τj

ti−1+µm−τj

∫ A

0

[
aj(X̃(u−))− aj(X(u−))

]
λ(du× da)

}

= E

{
fmj (Π(Xs))

∫ s+µm−τj

ti−1+µm−τj

∫ A

0

[
aj(X̃(u−))− aj(X(u−))

]
(λ−m)(du× da)

}

+ E

{
fmj (Π(Xs))

∫ s+µm−τj

ti−1+µm−τj

∫ A

0

[
aj(X̃(u−))− aj(X(u−))

]
m(du× da)

}

= E
∫ s+µm−τj

ti−1+µm−τj

∫ A

0
Du,af

m
j (Π(Xs))

[
aj(X̃(u−))− aj(X(u−))

]
m(du× da)

+ E

{
fmj (Π(Xs))

∫ s+µm−τj

ti−1+µm−τj

[
M∑
`=1

a`(X(u− τ`−))

(
aj(X(u−) + ν`)− aj(X(u−))

)]
du

}
,

(24)

where

X̃(u−) := X(u−) +
M∑
`=1

ν`c`(a; X(u− τ`−)).
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1812 CHUCHU CHEN AND DI LIU

Noting that

fmj (Π(Xs)) = u(. . . ,Xs−(µm) + νj , . . .)− u(. . . ,Xs−(µm), . . .),

we make the following estimates for functions of fmj :

E|fmj (Π(Xs))|2 ≤ E
∣∣∣u(. . . ,Xs−(µm) + νj , . . .)

∣∣∣2 + E
∣∣∣u(. . . ,Xs−(µm), . . .)

∣∣∣2
= E

∣∣∣E(φ(Y (tn; ti, η))
∣∣∣η = X̃s−

)∣∣∣2 + E
∣∣∣E(φ(Y (tn; ti, η))

∣∣∣η = Xs−

)∣∣∣2
≤ E

∣∣∣φ(Y (tn; ti, X̃s−))
∣∣∣2 + E

∣∣∣φ(Y (tn; ti,Xs−))
∣∣∣2,

where X̃s− ∈ L([−τ, 0],RN ) is defined by

Π(X̃s−) =
(
Xs−(µ1) . . . ,Xs−(µm) + νj , . . . ,Xs−(µk)

)
,

and thus

E|fmj (Π(Xs))|2 ≤ C‖φ‖2C1
b
(1 + E‖X(s+ ·)‖2L2([−τ,0])) ≤ C.

And the estimates for Du,zf
m
j are as follows. Since

E
∫ A

0
|Du,zf

m
j (Π(Xs))|2dz

= E
∫ A

0

∣∣∣ k∑
`=1

(
fmj (. . . ,Xs(µ`) +Du,zXs(µ`), . . .)− fmj (. . . ,Xs(µ`), . . .)

)∣∣∣2dz

≤ CE
∫ A

0

k∑
`=1

∣∣∣fmj (. . . ,Xs(µ`) +Du,zXs(µ`), . . .)− fmj (. . . ,Xs(µ`), . . .)
∣∣∣2dz,

we have

E
∣∣∣fmj (. . . ,Xs(µ`) +Du,zXs(µ`), . . .)− fmj (. . . ,Xs(µ`), . . .)

∣∣∣2
≤ 2E

∣∣∣u(. . . ,Xs−(µm) +Du,zXs−(µm) + νj)− u(. . . ,Xs−(µm) + νj)
∣∣∣2

+ 2E
∣∣∣u(. . . ,Xs−(µm) +Du,zXs−(µm))− u(. . . ,Xs−(µm))

∣∣∣2
≤ C‖φ‖2C1

b
‖Du,zXs(·)‖2L2([−τ,0]),

where in the last step we use the same technique (conditional expectation) as in the
estimate for fmj , and the fact that the difference in the solutions Y with different initial
data could be controlled by the difference of the initial data; i.e., for any initial data
η, ξ ∈ L([−τ, 0],RN ), and t > s, we get E|Y (t, s, η)−Y (t, s, ξ)|2 ≤ CE‖η−ξ‖2L2([−τ,0]).
Further,

E
∫ A

0
|Du,zf

m
j (Π(Xs))|2dz ≤ C‖φ‖2C1

b

∫ A

0
E‖Du,zX(s+ ·)‖2L2([−τ,0])dz ≤ C.
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ERROR ANALYSIS FOR D-LEAPING SCHEME 1813

Thus following from Proposition 2.4, we can see that Di,1m,j(s) ≤ Cδt. In fact, the
first term on the right-hand side of (24) can be estimated by the Hölder inequality

E
∫ s+µm−τj

ti−1+µm−τj

∫ A

0
Du,af

m
j (Π(Xs))

[
aj(X̃(u−))− aj(X(u−))

]
m(du× da)

≤
∫ s+µm−τj

ti−1+µm−τj

∫ A

0

{
E|Du,af

m
j (Π(Xs))|2

+ E
∣∣∣aj(X̃(u−))− aj(X(u−))

∣∣∣2}m(du× da)

≤ Cδt+ L2E
∫ s+µm−τj

ti−1+µm−τj

∫ A

0
|X̃(u)−X(u)|2m(du× da)

≤ Cδt+ L2K2E
∫ s+µm−τj

ti−1+µm−τj

∫ A

0

M∑
`=1

|c`(a; X(u− τ`−))|2m(du× da)

= Cδt+ L2K2E
∫ s+µm−τj

ti−1+µm−τj

M∑
`=1

a`(X(u− τ`−))du

≤ Cδt+ CL3K2E
∫ s+µm−τj

ti−1+µm−τj

(
1 +

M∑
`=1

|X(u− τ`−)|2
)

du

≤ Cδt.

The second term on the right-hand side of (24) can be estimated similarly as

E

{
fmj (Π(Xs))

∫ s+µm−τj

ti−1+µm−τj
g(u)du

}

≤
(
E|fmj (Π(Xs))|2

) 1
2

(
E
∣∣∣ ∫ s+µm−τj

ti−1+µm−τj
g(u)du

∣∣∣2) 1
2

≤ Cδt 1
2

(
E
∫ s+µm−τj

ti−1+µm−τj
|g(u)|2du

) 1
2

≤ Cδt,

where

g(u) =
M∑
`=1

a`(X(u− τ`−))
(
aj(X(u−) + ν`)− aj(X(u−))

)

and

E|g(u)|2 ≤ L2K2E

(
1 +

M∑
`=1

|X(u− τ`−)|2
)
≤ C.
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1814 CHUCHU CHEN AND DI LIU

The estimate of term Di,2m,j(s) is similar but uses the tame Itô formula.

Di,2m,j(s) = E
{
aj(X(ti−1 + µm − τj))

[(
fmj (Π(Xs))− fmj (Π(Xti−1))

)
−
(
fmj (Π(Ys))− fmj (Π(Xti−1))

)]}
= E

∫ s

ti−1

∫ A

0
Du,aaj(X(ti−1 + µm − τj))

k∑
`=1{

[fmj (. . . , X̃u−(µ`), . . .)− fmj (. . . ,Xu−(µ`), . . .)]

− [fmj (. . . , Ỹu−(µ`), . . .)− fmj (. . . ,Yu−(µ`), . . .)]
}
m(du× da)

+ Eaj(X(ti−1 + µm − τj))
∫ s

ti−1

k∑
`=1

M∑
j1=1

[
aj1(X(u+ µ` − τj1−))F `j1(Π(Xu))

− aj1(X(ti−1 + µ` − τj1−))F `j1(Π(Yu))
]
du,

(25)

where

F `j1(Π(Xu)) = fmj (. . . ,Xu−(µ`) + νj1 , . . .)− fmj (. . . ,Xu−(µ`), . . .).

By Propositions 2.4 and 3.11, we may show that Di,2m,j(s) ≤ Cδt. In fact, the first
term on the right-hand side of (25) can be estimated by the Hölder inequality,

E
∫ s

ti−1

∫ A

0
Du,aaj(X(ti−1 + µm − τj))g1(u, a)m(du× da)

≤
∫ s

ti−1

∫ A

0

[
E|Du,aaj(X(ti−1 + µm − τj))|2 + E|g1(u, a)|2

]
m(du× da)

≤ Cδt+
∫ s

ti−1

∫ A

0
E|Du,aX(ti−1 + µm − τj)|2m(du× da)

≤ Cδt,
where

g1(u, a) =
k∑
`=1

[fmj (. . . , X̃u−(µ`), . . .)− fmj (. . . ,Xu−(µ`), . . .)]

− [fmj (. . . , Ỹu−(µ`), . . .)− fmj (. . . ,Yu−(µ`), . . .)]

and∫ A

0
E|g1(u, a)|2da

≤ C
∫ A

0
E‖X̃(u+ ·)−X(u+ ·)‖2L2([−τ,0]) + E‖Ỹ (u+ ·)− Y (u+ ·)‖2L2([−τ,0])da

≤ C
∫ A

0

M∑
j=1

E‖cj(a; Xu−τj (·))‖L2([−τ,0]) +
M∑
j=1

E‖cj(a; Yu−τj (·))‖L2([−τ,0])da

= CE

(
M∑
j=1

‖aj(Xu−τj (·))‖L1([−τ,0]) +
M∑
j=1

‖aj(Yu−τj (·))‖L1([−τ,0])

)
≤ CE(1 + ‖Xu−τj (·)‖2L2([−τ,0]) + ‖Yu−τj (·)‖2L2([−τ,0])) ≤ C.
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ERROR ANALYSIS FOR D-LEAPING SCHEME 1815

The second term on the right-hand side of (25) can be estimated similarly as

Eaj(X(ti−1 + µm − τj))
∫ s

ti−1

g2(u)du

≤
(
E|aj(X(ti−1 + µm − τj))|2

) 1
2

(
E|
∫ s

ti−1

g2(u)du|2
) 1

2

≤ Lδt 1
2

(
1 + E|X(ti−1 + µm − τj)|2

) 1
2

(
E
∫ s

ti−1

|g2(u)|2du

) 1
2

≤ Cδt,

where

g2(u) =
k∑
`=1

M∑
j1=1

[
aj1(X(u+ µ` − τj1−))F `j1(Π(Xu))

− aj1(X(ti−1 + µ` − τj1−))F `j1(Π(Yu))
]

and

E|g2(u)|2 ≤ C

(
1 + sup

u∈[ti−1,s]
max

1≤`≤k
max

1≤j≤M
E|X(u+ µ` − τj)|2

)
≤ C.

Therefore Dim,j ≤ Cδt2. Substituting it into (22), we finish the proof.

3.3. Numerical examples. We apply ghd D-leaping method for two chemical
reaction systems. In these systems, exact solutions are obtained from the SSA algo-
rithm. In order to demonstrate the order of accuracy, we follow a procedure that is
widely used in the numerical study of SDEs. We simulate X(t) from time t = 0 to
t = T , advancing by a fixed time stepsize δt. If the sample size is large enough, the
statistical error in the expectation for a function of the solution could be neglected.
We double the stepsize to 2δt to calculate the convergence order.

3.3.1. Example 1. For this system, we consider S → ∅ with the propensity
function being a1(x) = cx, where the rate constant c = 0.1. The state change vector
is ν1 = −1, the time delay is τ = 1, and the initial condition is X0 = 10000. We
simulate the reaction from time 0 to T = 10 using different stepsizes.

We plot the strong error in Figure 1 and the absolute errors of mean and variance
in Figure 2. The sample size is as large as 106 so that the magnitude of statistical
fluctuation is small. It shows that, for the system, the D-leaping scheme has half order
accuracy for the strong convergence and first order accuracy for the weak convergence.

3.3.2. Example 2. This example has two reaction channels:

R1 : S1 + S2 → S3, R2 : S3 → ∅.

The reaction channel R2 fires without delay, but the reaction channel R1 incurs a
delay. We assume that R1 belongs to consuming type, which means that once an R1
reaction occurs, we immediately have X1 = X1−1 and X2 = X2−1, but we will have
X2 = X3 + 1 after a delay. In our simulations, we chose c1 = 0.001 and c2 = 0.001,
used X1(0) = 1000, X2(0) = 1000, and X3(0) = 0, and set the delay of R1 to be
τ = 0.1.
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Fig. 1. Log-log plot of the strong error.
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Fig. 2. Log-log plot of the absolute error with functions f(x) = x and f(x) = x2, respectively.

We ran simulation 105 times, and in each time, simulation starts at t = 0 and
ends at T = 1. Figures 3 and 4 depict the strong and weak convergence behaviors
of the D-leaping scheme applied to this system, from which we may observe that the
strong convergence of the D-leaping scheme is of half order and the weak convergence
is of first order.

4. Generalization for highly accurate methods. The construction of high
weak order schemes for SDEs plays an important role in the implications in the efficient
simulations of SDEs. Utilizing the Itô formula to expand the solution of SDEs and
then truncating the solution series is the common method to construct high weak
order schemes; see, for instance, [17]. By adding a random correction to the primitive
tau-leaping scheme in each time step, [10] presents a new method which improves
the accuracy of the approximations. This gain in accuracy actually comes from the
reduction in the local truncation error of the scheme in the order of τ , the marching
time stepsize. We introduce the definition of weak consistency (see [10, Definition 1]):
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Fig. 3. Log-log plot of the strong error.
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Fig. 4. Log-log plot of the absolute error with functions f(x) = x and f(x) = |x|2, respectively.

if there exist C > 0 and δ > 0 such that for all τ ∈ [0, δ],

∣∣∣Ex[(Xn+1 −Xn)p
]
− Ex

[
(X(tn + τ)−X(tn))p

]∣∣∣ ≤ Cτ q+1,

we say that the numerical scheme {Xn}n∈N is weak consistent for the pth moment to
qth order. Here Ex denotes the expectation conditioned on X(tn)−Xn = x. Remark
3 in [10] states that if a numerical scheme is stable and qth order consistent, then it
is of qth order accuracy.

In this section, we take Example 1 for demonstration to investigate the method
in [10] for the system with delays, i.e., SDDEs driven by the Poisson random measure.
Similarly, by adding a random correction to the primitive D-leaping scheme in each
step, we are able to greatly improve the accuracy of the D-leaping scheme for the
mean. However, delay introduces more technical difficulties for the improvement to
higher order moments of the solution. To solve this problem, we first fix the test
function (for example, φ(x) = |x|2 denotes second order moment), and then use the
tame Itô formula to obtain the new variable Z := φ(X), and finally we add the random
correction to the augmented variables.
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1818 CHUCHU CHEN AND DI LIU

The construction of higher order accuracy methods for mean is similar to that
in [10]. From Example 1 we obtain

E(X(tn+1)−X(tn))

= E
[ ∫ tn+1

tn

∫ A

0
ν1c1(a; X(s− τ−))λ(ds× da)

]
= ν1E

∫ tn+1

tn

a1(X(t− τ))dt = ν1E
∫ tn+1−τ

tn−τ
a1(X(t))dt

= ν1E
∫ tn+1−τ

tn−τ

[
a1(X(tn − τ))

+
∫ t

tn−τ

∫ A

0

(
a1(X(s−) + ν1c1(a; X(s− τ−)))− a1(X(s−))

)
λ(ds× da)

]
dt

= ν1δtEa1(X(tn − τ))

+ ν1E
∫ tn+1−τ

tn−τ

∫ t

tn−τ
a1(X(s− τ))

(
a1(X(s) + ν1)− a1(X(s))

)
dsdt

= ν1
δt2

2
Ea1(X(tn − 2τ))

(
a1(X(tn − τ) + ν1)− a1(X(tn − τ))

)
+ ν1δtEa1(X(tn − τ)) +O(δt3).

For the numerical scheme, we take the following uniform mesh on [0, T ]: 0 = t0 <
t1 < · · · < tN = T , where tn = t0 + nδt, n = 0, 1, . . . , N . In addition, the choice of
δt is not arbitrary; it has to be chosen such that ` := τ/δt ∈ N. In other words, the
delay period τ has to be a multiple of δt. Thus the D-leaping scheme reads

Yn+1 = Yn + ν1r1,

with r1 = P(a1(Yn−`)δt).
Consider the D-leaping scheme with a random correction r̃1:

(26) Yn+1 = Yn + ν1(r1 + r̃1).

We require

EηEr1(r̃1) =
δt2

2
a1(η(−2τ))ξ +O(δt3)

with ξ = a1(η(−τ) + ν1)− a1(η(−τ)) = cν1 to obtain

(27) E
(
X(tn+1; tn, η)− η(0)

)
− E

(
Y (tn+1; tn, η)− η(0)

)
= O(δt3).

In practice, we may take r̃1 = sgn(α)P(|α|), where

α =
δt2

2
a1(Yn−2`)

(
a1(Yn−` + ν1)− a1(Yn−`)

)
.

Figure 5 plots the absolute error of mean for Example 1. The sample size is taken
to be 106. We may observe that the scheme (26) has second order accuracy for the
mean.

For the generalization to high moment φ, as we said in the beginning of this
section, we have to take a novel approach, which may require using tame Itô formula.
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Fig. 5. Log-log plot of the absolute error with function f(x) = x.

Assume φ(x) = |x|2, and let Z := X2. Following from the Itô formula, we get

Z(t) = Z(0) +
∫ t

0

∫ A

0

[(
X(s−) + ν1c1(a; X(s− τ−))

)2
−
(
X(s−)

)2]
λ(ds× da)

= Z(0) +
∫ t

0

∫ A

0

[
2ν1X(s−)c1(a; X(s− τ−)) + ν2

1c
2
1(a; X(s− τ−))

]
λ(ds× da).

(28)

Consider the equations for X and Z together; then we take the above approach of the
generalization to the mean for the augment variable (X,Z) as follows:

E(Z(tn+1)− Z(tn))

= E
∫ tn+1

tn

∫ A

0

[
2ν1X(s−)c1(a; X(s− τ−)) + ν2

1c
2
1(a; X(s− τ−))

]
λ(ds× da)

= E
∫ tn+1

tn

[
2ν1X(t)a1(X(t− τ)) + ν2

1a1(X(t− τ))
]
dt.

Applying the tame Itô formula to X(t)a1(X(t− τ)) and noting that a1(x) = cx (for
the nonlinear case, Taylor expansion may be needed), we get

X(t)a1(X(t− τ)) = X(tn)a1(X(tn − τ))

+
∫ t

tn

∫ A

0

(
X(s−)+ν1c1(a; X(s− τ−))

)
a1(X(s− τ))−X(s−)a1(X(s− τ))λ(ds×da)

+
∫ t

tn

∫ A

0
X(s−)a1(X(s− τ)+ν1c1(a; X(s− 2τ−)))−X(s−)a1(X(s− τ−))λ(ds×da)

= X(tn)a1(X(tn − τ)) +
∫ t

tn

∫ A

0
ν1a1(X(s− τ))c1(a; X(s− τ−))λ(ds× da)

+
∫ t

tn

∫ A

0
cν1X(s−)c1(a; X(s− 2τ−))λ(ds× da)

(29)

and applying the Itô formula to a1(X(t− τ)) with a1(x) = cx (for the nonlinear case,
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1820 CHUCHU CHEN AND DI LIU

the Taylor expansion may be needed), we get

a1(X(t− τ)) = a1(X(tn − τ))

+
∫ t

tn

∫ A

0

[
a1(X(s− τ−) + ν1c1(a; X(s− 2τ−)))− a1(X(s− τ−))

]
λ(ds× da)

= a1(X(tn − τ)) +
∫ t

tn

∫ A

0
cν1c1(a; X(s− 2τ−))λ(ds× da).

(30)

Thus

E(Z(tn+1)− Z(tn))

= 2ν1E
∫ tn+1

tn

[
X(tn)a1(X(tn − τ))

+
∫ t

tn

∫ A

0
ν1a1(X(s− τ))c1(a; X(s− τ−))λ(ds× da)

+
∫ t

tn

∫ A

0
cν1X(s−)c1(a; X(s− 2τ−))λ(ds× da)

]
dt

+ ν2
1E
∫ tn+1

tn

[
a1(X(tn − τ)) +

∫ t

tn

∫ A

0
cν1c1(a; X(s− 2τ−))λ(ds× da)

]
dt

= 2ν1E
∫ tn+1

tn

[
X(tn)a1(X(tn − τ)) +

∫ t

tn

ν1a
2
1(X(s− τ))ds

+
∫ t

tn

ν1X(s)a1(X(s− 2τ))ds
]
dt

+ ν2
1E
∫ tn+1

tn

[
a1(X(tn − τ)) +

∫ t

tn

cν1a1(X(s− 2τ))ds
]
dt

= δtE
[
2ν1X(tn)a1(X(tn − τ)) + ν2

1a1(X(tn − τ))
]

+ δt2E
[
ν2
1a

2
1(X(tn − τ)) + cν2

1X(tn)a1(X(tn − 2τ)) +
cν3

1

2
a1(X(tn − 2τ))

]
+O(δt3).

Consider the D-leaping scheme with a random correction to the equations of X
and Z:

X̄n+1 = X̄n + ν1(rx + r̃x),
Z̄n+1 = Z̄n + ν1(rz + r̃z).

(31)

We require

EηErx(r̃x) =
δt2

2
cν1a1(η(−2τ)) +O(δt3),

EηErx(r̃z) = ν1δt
2a2

1(η(−τ)) + cν1δt
2η(0)a1(η(−2τ)) +

cν2
1δt

2

2
a1(η(−2τ)) +O(δt3)

to obtain

E
(
X(tn+1; tn, η)− η(0)

)
− E

(
X̄(tn+1; tn, η)− η(0)

)
= O(δt3),

E
(

(X(tn+1; tn, η))2 − (η(0))2
)
− E

(
Z̄(tn+1; tn, η)− (η(0))2

)
= O(δt3).
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Fig. 6. Log-log plot of the absolute error with functions f(x) = x and f(x) = x2, respectively.

In practice, we may take r̃x = sgn(α)P(|α|), where

α =
δt2

2
cν1a1(X̄n−2`),

and take r̃z = sgn(β)P(|β|), where

β = ν1δt
2a2

1(X̄n−`) + cν1δt
2X̄na1(X̄n−2`) +

cν2
1δt

2

2
a1(X̄n−2`).

Figure 6 plots the absolute errors of first and second moments for Example 1
when applying the generalized scheme (31). The sample size is taken to be 106. We
may observe that the scheme (31) has second order accuracy for both first and second
moments.

Similarly, for the third order moment, we assume φ(x) = |x|3 and let Z := X3.
Following from the Itô formula, we get

Z(t) = Z(0) +
∫ t

0

∫ A

0

[(
X(s−) + ν1c1(a; X(s− τ−))

)3
−
(
X(s−)

)3]
λ(ds× da)

= Z(0) +
∫ t

0

∫ A

0

[
3ν1X2(s−)c1(a; X(s− τ−)) + 3ν2

1X(s−)c21(a; X(s− τ−))

+ ν3
1c

3
1(a; X(s− τ−))

]
λ(ds× da).

Consider the equations for X and Z together; then we use the approach above to get

E
(
Z(tn+1)− Z(tn)

)
= E

∫ tn+1

tn

∫ A

0

[
3ν1X2(t−)c1(a; X(t− τ−))

+ 3ν2
1X(t−)c21(a; X(t− τ−)) + ν3

1c
3
1(a; X(t− τ−))

]
λ(dt× da)

= E
∫ tn+1

tn

[
3ν1X2(t)a1(X(t− τ)) + 3ν2

1X(t)a1(X(t− τ)) + ν3
1a1(X(t− τ))

]
dt.

Applying the tame Itô formula to X2(t)a1(X(t− τ)) and noting that a1(x) = cx (for
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1822 CHUCHU CHEN AND DI LIU

the nonlinear case, the Taylor expansion may be needed), we get

X2(t)a1(X(t− τ)) = X2(tn)a1(X(tn − τ))

+
∫ t

tn

∫ A

0

[
X2(s)a1(X(s− τ−) + ν1c1(a; X(s− 2τ−)))

−X2(s)a1(X(s− τ−))
]
λ(ds× da)

+
∫ t

tn

∫ A

0

[(
X(s−) + ν1c1(a; X(s− τ−))

)2
a1(X(s− τ−))

−X2(s−)a1(X(s− τ−))
]
λ(ds× da)

= X2(tn)a1(X(tn − τ)) +
∫ t

tn

∫ A

0
cν1X

2(s)c1(a; X(s− 2τ−))λ(ds× da)

+
∫ t

tn

∫ A

0

[
2ν1X(s−)a1(X(s− τ−))c1(a; X(s− τ−))

+ ν2
1a1(X(s− τ−))c21(a; X(s− τ−))

]
λ(ds× da).

Using also (29) and (30), we obtain

E(Z(tn+1)− Z(tn))

= 3ν1E
∫ tn+1

tn

[
X2(tn)a1(X(tn − τ))

+
∫ t

tn

∫ A

0
cν1X

2(s)c1(a; X(s− 2τ−))λ(ds× da)

+
∫ t

tn

∫ A

0

(
2ν1X(s−)a1(X(s− τ−))c1(a; X(s− τ−))

+ ν2
1a1(X(s− τ−))c21(a; X(s− τ−))

)
λ(ds× da)

]
dt

+ 3ν2
1E
∫ tn+1

tn

[
X(tn)a1(X(tn − τ))

+
∫ t

tn

∫ A

0
ν1a1(X(s− τ))c1(a; X(s− τ−))λ(ds× da)

+
∫ t

tn

∫ A

0
cν1X(s−)c1(a; X(s− 2τ−))λ(ds× da)

]
dt

+ ν3
1E
∫ tn+1

tn

[
a1(X(tn − τ)) +

∫ t

tn

∫ A

0
cν1c1(a; X(s− 2τ−))λ(ds× da)

]
dt

= 2ν1E
∫ tn+1

tn

[
X(tn)a1(X(tn − τ)) +

∫ t

tn

ν1a
2
1(X(s− τ))ds

+
∫ t

tn

ν1X(s)a1(X(s− 2τ))ds
]
dt

+ ν2
1E
∫ tn+1

tn

[
a1(X(tn − τ)) +

∫ t

tn

cν1a1(X(s− 2τ))ds
]
dt.
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ERROR ANALYSIS FOR D-LEAPING SCHEME 1823

Simplifying the above equation, we get

E(Z(tn+1)− Z(tn))

= δtE
[
3ν1X2(tn)a1(X(tn − τ)) + 3ν2

1X(tn)a1(X(tn − τ)) + ν3
1a1(X(tn − τ))

]
+ δt2E

[
3cν2

1

2
X2(tn)a1(X(tn − 2τ)) + 3ν2

1X(tn)a2
1(X(tn − τ)) +

3ν3
1

2
a2
1(X(tn − τ))

+
3ν3

1

2
a2
1(X(tn − τ)) +

3cν3
1

2
X(tn)a1(X(tn − 2τ)) +

cν4
1

2
a1(X(tn − 2τ))

]
+O(δt3).

Consider the D-leaping scheme with a random correction to the equations of X
and Z:

X̄n+1 = X̄n + ν1(rx + r̃x),
Z̄n+1 = Z̄n + ν1(rz + r̃z).

(32)

We require

EηErx(r̃x) =
δt2

2
cν1a1(η(−2τ)) +O(δt3),

EηErx(r̃z) =
3cν1δt2

2
η(0)2a1(η(−2τ)) + 3ν1δt2η(0)a2

1(η(−τ)) +
3ν2

1δt
2

2
a2
1(η(−τ))

+
3ν2

1δt
2

2
a2
1(η(−τ)) +

3cν2
1δt

2

2
η(0)a1(η(−2τ)) +

cν3
1δt

2

2
a1(η(−2τ)) +O(δt3)

to obtain

E
(
X(tn+1; tn, η)− η(0)

)
− E

(
X̄(tn+1; tn, η)− η(0)

)
= O(δt3),

E
(

(X(tn+1; tn, η))3 − (η(0))3
)
− E

(
Z̄(tn+1; tn, η)− (η(0))3

)
= O(δt3).

In practice, we may take r̃x = sgn(α)P(|α|), where

α =
δt2

2
cν1a1(X̄n−2`),

and take r̃z = sgn(β)P(|β|), where

β =
3cν1δt2

2
X̄2
na1(X̄n−2`) + 3ν1δt2X̄na

2
1(X̄n−`) +

3ν2
1δt

2

2
a2
1(X̄n−`)

+
3ν2

1δt
2

2
a2
1(X̄n−`) +

3cν2
1δt

2

2
X̄na1(X̄n−2`) +

cν3
1δt

2

2
a1(X̄n−2`).

5. Conclusion. We consider the convergence order in both mean-square strong
and weak senses of the D-leaping scheme for chemical reactions within the framework
of stochastic delay differential equations (SDDEs) driven by a Poisson random mea-
sure. The infinite dimensional tame Itô formula and the Malliavin calculus for the
solution process of the SDDEs are established. It is proved that the mean-square con-
vergence order is of 1/2 and the weak convergence order is of 1. Numerical experiments
are performed to support the theoretical results. Finally, we propose the construction
of highly accurate schemes. We improve the accuracy of the D-leaping scheme for the
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1824 CHUCHU CHEN AND DI LIU

mean via the addition of a random correction to the primitive D-leaping scheme in
each step. For improvement to higher order moments of the solution, and for solving
the problems introduced by delay, we first fix the test function and then use the tame
Itô formula to obtain the augmented variables. Finally, we add random corrections
to the D-leaping scheme in each step. The methodology of the construction of highly
accurate schemes for the general system may be a topic of future work. Moreover, the
analysis for long time behavior of the chemical reaction system with delay, including
the invariant measure and ergodicity, is also an interesting topic.

Appendix A. Proof of Proposition 3.3.

Proof. The idea of the proof is similar to that of Lemma 2.2 in [13] and is obtained
directly through the DSSA algorithm. We first define the process

(33) N j(t) =
∫ t

0

∫ A

0
cj(a; X(s− τj−))λ(ds× da), j = 1, 2, . . . ,M.

Define a sequence of processes Xn(t), stopping times Tn, and indices In (n = 0, 1, . . .)
as Xn(t) = η(t) for n ∈ Z+

0 and t ∈ [−τ, 0], X0(t) = η(0) for t ≥ 0, T 0 = 0, I0 = 1,
and

Xn+1(t) = η(0) +
M∑
j=1

νIj1{t≥T j},

Tn+1 = min{inf{t : N j(t,Xn+1) > N j(Tn,Xn+1)}, j = 1, 2, . . . ,M},
In+1 = Index j ∈ {1, 2, . . . ,M} such that ∆N j(Tn+1,Xn+1) = 1.

It is easy to find that under Assumption 2.1, Xn(t) remains in ΩX0 permanently,
Xn(t) = Xn−1(t) in [−τ, Tn−1), and the stopping time can be extended to∞. There-
fore, we show that the solution of (1) is well-posed.

For the property of Hölder continuous, we may let t > s ≥ 0 and get

X(t)−X(s) =
M∑
j=1

∫ t

s

∫ A

0
νjcj(a; X(u− τj−))λ(du× da).(34)

First, we let s = 0 to show that there exists a constant C := C(η,K,L, T,M) such
that E|X(t)|2 ≤ C. In fact,

E|X(t)|2 . E|η(0)|2 + E
∣∣∣ M∑
j=1

∫ t

0

∫ A

0
νjcj(a; X(u− τj−))λ(du× da)

∣∣∣2
. C + E|η(0)|2 +

M∑
j=1

∫ t

0
E|X(s− τj)|2ds

≤ C + E|η(0)|2 +M‖η‖2L2([−τ,0]) +M

∫ t

0
E|X(s)|2ds,

(35)

where we use the following estimation to the stochastic integral with respect to the
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ERROR ANALYSIS FOR D-LEAPING SCHEME 1825

Poisson random measure:

E
∣∣∣ ∫ t

0

∫ A

0
cj(a; X(u− τj−))λ(du× da)

∣∣∣2
. E

∣∣∣ ∫ t

0

∫ A

0
cj(a; X(u− τj−))m(du× da)

∣∣∣2
+ E

∣∣∣ ∫ t

0

∫ A

0
cj(a; X(u− τj−))(λ−m)(du× da)

∣∣∣2
= E

∣∣∣ ∫ t

0
aj(X(u− τj−))du

∣∣∣2 + E
∫ t

0

∫ A

0

∣∣∣cj(a; X(u− τj−))
∣∣∣2m(du× da)

= E
∣∣∣ ∫ t

0
aj(X(u− τj−))du

∣∣∣2 + E
∫ t

0
aj(X(u− τj−))du

. E
∫ t

0
|aj(X(u− τj))|2du+ E

∫ t

0
|aj(X(u− τj))|du

. C + E
∫ t

0
|X(u− τj)|2du+ E

∫ t

0
|X(u− τj)|du ≤ C + E

∫ t

0
|X(u− τj)|2du.

Here we use the fact that X(t) ∈ ΩX0 , which means that |X(t)| ≤ |X(t)|2. The
notation a . b stands for a ≤ Cb, where C > 0 is a constant.

Applying Gronwall’s inequality to (35), we obtain E|X(t)|2 ≤ C.
Next, we apply E| · |2 to (34) and estimate similarly:

E|X(t)−X(s)|2 . E
∣∣∣ M∑
j=1

∫ t

s

∫ A

0
νjcj(a; X(u− τj−))λ(du× da)

∣∣∣2
. (t− s) +

M∑
j=1

E
∫ t

s

|X(u− τj)|2du

. (t− s).

Thus we finish the proof.

Appendix B. The proof of Lemma 3.8.

Proof. Suppose i = 0 and let t ∈ [0, T ]. Consider the following case.
Case 1. 0 ≤ t ≤ t1.

Y (t; 0, η) = η(0) +
M∑
j=1

∫ t

0

∫ A

0
νjcj(a; Y (ξ(s)− τj ; 0, η))λ(dt× da)

= η(0) +
M∑
j=1

∫ t

0

∫ A

0
νjcj(a; η(−τj))λ(dt× da)

= F1(t, ω, η(−τj)).

Case 2. t1 ≤ t ≤ t2.

Y (t; 0, η) = Y (t1) +
M∑
j=1

∫ t

t1

∫ A

0
νjcj(a; Y (t1 − τj))λ(dt× da)

= F2(t, ω, η(−τj), η(t1 − τj)).
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1826 CHUCHU CHEN AND DI LIU

Case 3. t2 ≤ t ≤ t3.

Y (t; 0, η) =Y (t2) +
M∑
j=1

∫ t

t1

∫ A

0
νjcj(a; Y (t2 − τj))λ(dt× da)

=F3(t, ω, η(−τj), η(t1 − τj), η(t2 − τj)).

Case k. tk−1 ≤ t ≤ tk. By induction, there are fixed number µ1, . . . , µ` ∈ [−τ, 0]
such that

Y (t; 0, η) = Fk(t, ω, η(µ1), . . . , η(µ`)),

which is a tame function of η.
To complete the proof of the lemma, we take

F (t, ω,Π(η)) :=
NT−1∑
i=1

1[ti,ti+1)(t)Fi+1(t, ω,Π(η)).

Appendix C. Proof of Proposition 3.10.

Proof. We know that

φ(Π(Xt))− φ(Π(X0))

=
∑

0≤s≤t

[
φ(Π(Xs))− φ(Π(Xs−))

]
=
∑

0≤s≤t

[
φ(X(s+ µ1), . . . , X(s+ µk))− φ(X(s+ µ1−, . . . , X(s+ µk−)))

]

=
∑

0≤s≤t

k∑
i=1

[
φ(X(s+ µ1−), . . . , X(s+ µi−1−), X(s+ µi), . . . , X(s+ µk))

− φ(X(s+ µ1−), . . . , X(s+ µi−1−), X(s+ µi−), . . . , X(s+ µk))
]

=
k∑
i=1

∑
0≤s≤t

[
φ(X(s+ µ1−), . . . , X(s+ µi−1−), X(s+ µi), . . . , X(s+ µk))

− φ(X(s+ µ1−), . . . , X(s+ µi−1−), X(s+ µi−), . . . , X(s+ µk))
]

=:
k∑
i=1

Bi(t).

(36)

Let Tn, n ≤ 0 denote the jump time for η(t), −τ ≤ t ≤ 0. Define q(t) =
∫ A
0 aλ(dt×da),

and let Tn, n > 0, denote the jump time for q, which is defined recursively by Tn =
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inf{t > Tn−1 : ∆q(t) ∈ (0, A]}. Hence

Bi(t) =
∑
n≥1

[
φ(X((t+ µ1) ∧ Tn−), . . . , X((t+ µi−1) ∧ Tn−),

X((t+ µi) ∧ Tn), . . . , X((t+ µk) ∧ Tn))
− φ(X((t+ µ1) ∧ Tn−), . . . , X((t+ µi−1) ∧ Tn−),

X((t+ µi) ∧ Tn−), . . . , X((t+ µk) ∧ Tn))
]

=
∑
n≥1

[
φ(. . . , X((t+ µi) ∧ Tn−) +K((t+ µi) ∧ Tn,∆q((t+ µi) ∧ Tn)), . . .)

− φ(. . . , X((t+ µi) ∧ Tn−), . . .)
]

=
∫ t

0

∫ A

0

[
φ(Xs−(µ1), . . . , Xs−(µi−1), Xs−(µi) +K(s+ µi, a), Xs(µi+1), . . . , Xs(µk))

− φ(Xs−(µ1), . . . , Xs−(µi−1), Xs−(µi), Xs(µi+1), . . . , Xs(µk))
]
λ(ds× da).

Thus we finish the proof.

Appendix D. Proof of Proposition 3.11.

Proof. The proof of X(t) ∈ D1,2 is similar to that of (18), but the idea is applied
to the Picard approximations to (17); see, for instance, [16, Theorem 17.2]. So here
we only focus on the proof of (18).

Taking the Malliavin derivative to (17), for t > σ we have

Dr,zX(t) =Dr,zη(0) +
M∑
j=1

Dr,z

∫ t

σ

∫ A

0
νjcj(a; X(s− τj−))λ(ds× da),(37)

where by Proposition 3.7,

Dr,z

∫ t

σ

∫ A

0
νjcj(a; X(s− τj−))λ(ds× da)

= Dr,z

∫ t

σ

νjaj(X(s− τj−))ds+Dr,z

∫ t

σ

∫ A

0
νjcj(a; X(s− τj−))(λ−m)(ds× da)

= νj

∫ t

σ

[
aj(X(s− τj−) +Dr,zX(s− τj−))− aj(X(s− τj−))

]
ds

+ νjcj(z; X(r − τj−)) + νj
∫ t

σ

∫ A

0

[
cj(a; X(s− τj−) +Dr,zX(s− τj−))

− cj(a; X(s− τj−))
]
(λ−m)(ds× da).

(38)

For σ − τ ≤ t ≤ σ, we have

Dr,zX(t) = Dr,zη(t− σ).

Take E| · |2 with respect to (37)–(38) to get

E|Dr,zX(t)|2 .E|Dr,zη(0)|2 + E|
M∑
j=1

νjcj(z; X(r − τj−))|2 +
M∑
j=1

C1,j +
M∑
j=1

C2,j ,

(39)
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with

C1,j = E
∣∣∣∣∫ t

σ

[
aj(X(s− τj−) +Dr,zX(s− τj−))− aj(X(s− τj−))

]
ds
∣∣∣∣2 ,

C2,j = E

∣∣∣∣∣
∫ t

σ

∫ A

0

[
cj(a; X(s− τj−) +Dr,zX(s− τj−))

− cj(a; X(s− τj−))
]
(λ−m)(ds× da)

∣∣∣∣∣
2

.

We estimate each term separately. For term C1,j , we have

C1,j . (T − σ)E
∫ t

σ

∣∣∣aj(X(s− τj−) +Dr,zX(s− τj−))− aj(X(s− τj−))
∣∣∣2ds

. E
∫ t

σ

|Dr,zX(s− τj−)|2ds.

For term C2,j , we have

E
∫ t

σ

∫ A

0
|cj(a; X(s− τj−) +Dr,zX(s− τj−))− cj(a; X(s− τj−))|2m(ds× da)

. E
∫ t

σ

[
|hj−1(X(s−) +Dr,zX(s−))− hj−1(X(s−))|

+ |hj(X(s−) +Dr,zX(s−))− hj(X(s−))|
]
ds

. max
1≤j≤M

∫ t

σ

E|Dr,zX(s− τj−)|ds

. (T − σ) + max
1≤j≤M

∫ t

σ

E|Dr,zX(s− τj−)|2ds.

Summarizing the above estimates, we obtain

E|Dr,zX(t)|2 ≤ C(1 + E|Dr,zη(0)|2) + C max
1≤j≤M

E
∫ t

σ

|Dr,zX(s− τj−)|2ds.

Integrating with respect to dz, we have

E
∫ A

0
|Dr,zX(t)|2dz ≤C

(
1 + E

∫ A

0
|Dr,zη(0)|2dz

)
+ C max

1≤j≤M
E
∫ t

σ

∫ A

0
|Dr,zX(s− τj−)|2dsdz,

(40)

which leads to

E
∫ A

0
|Dr,zX(t)|2dz ≤ C

(
1 + sup

σ−τ≤r≤σ
E
∫ A

0
‖Dr,zη‖2∞dz

)
eC(T−σ).

Thus we finish the proof.

D
ow

nl
oa

de
d 

07
/2

8/
18

 to
 1

24
.1

6.
14

8.
10

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERROR ANALYSIS FOR D-LEAPING SCHEME 1829

REFERENCES
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